# Fill Ups, True False of Equilibrium

### **Fill in the Blanks**

Q.1. The conjugate base of  $^{HSO_{4}}$  in aqueous solution is ...... (1982 - 1 Mark)

Ans. SO<sub>4</sub><sup>2-</sup>

**Solution.**  $SO_4^{2-}$ ; Conjugate base = Acid - H<sup>+</sup>

∴ Conjugate base of HSO<sub>4</sub><sup>-</sup> is SO<sub>4</sub><sup>2-</sup>

Ans. amphoteric

**Solution. amphoteric ;** because amphoteric substances show properties of both acids and basic

Q.3. For a given reversible reaction at a fixed temperature, equilibrium constants K<sub>p</sub> and K<sub>c</sub> are related by...... (1994 - 1 Mark)

**Ans.**  $K_p = K_c (RT)^{\Delta n}$ 

Solution.  $K_p = K_c (RT)^{\Delta n}$ ;

Here  $\Delta n = No$ . of moles of gaseous products -no. of moles of gaseous reactants

R = gas constant, and T = absolute temperature.

Q.4. A ten - fold increase in pressure on the reaction ,  $N_2(g)+3H_2(g) = 2NH_3(g)$  at equilibrium results in .... in K<sub>P</sub>. (1996 - 1 Mark)

Ans. no change

**Solution. no change;** ( $K_p$  of an equilibrium reaction is independent of the pressure of the system.)





Ans. I<sub>2</sub>

**Solution.** I<sub>2</sub>. : electron acceptors are Lewis acids.

### True/False

Q.1. Aluminium chloride (AlCl<sub>3</sub>) is a Lewis acid because it can donate electrons. (1982 - 1 Mark)

Ans. F

**Solution. False :** AlCl<sub>3</sub> is a Lewis acid (although they do not have a proton, aprotic) because it accepts electrons (octet being incomplete).

Q.2. If equilibrium constant for the reaction  $A_2+B_2 \rightleftharpoons 2AB$ , is K, then for the backward reaction  $AB \rightleftharpoons \frac{1}{2}A_2+\frac{1}{2}B_2$ , the equilibrium constant is 1/K. (1984 - 1 Mark)

#### Ans. F

## Solution. False :

$$K \text{ for } A_2 + B_2 \rightleftharpoons 2AB \text{ is } \frac{[AB]^2}{[A_2][B_2]}$$

$$K' \text{ for } AB \rightleftharpoons \frac{1}{2}A_2 + \frac{1}{2}B_2 \text{ is } \frac{[A_2]^{\frac{1}{2}}[B_2]^{\frac{1}{2}}}{[AB]}$$

$$or \quad (K')^2 = \frac{[A_2][B_2]}{[AB]^2} = \frac{1}{K} \quad \therefore \quad K' = \sqrt{\frac{1}{K}}$$

Q.3. When a liquid and its vapour are at equilibrium and the pressure is suddenly decreased, cooling occurs. (1984 - 1 Mark)

Ans. T

**Solution. True :** Lower the pressure, lower will be boiling point. More liquid will vapourise and temperature decreases.

CLICK HERE

≫

🕀 www.studentbro.in

# Q.4. Solubility of sodium hydroxide increases with increase in temperature. (1985 - ½ Mark)

Ans. F

Solution. TIPS/Formulae : Dissolution of NaOH is exothermic.

**False :** When a solute like NaOH is added to a solvent exothermic dissolution takes place. An increase in temperature always favour endothermic process. So solutes having exothermic dissolution shows a decrease in their solubility with temperature





# Subjective Questions of Equilibrium, (Part -1)

Q.1. A solution contains Na<sub>2</sub>CO<sub>3</sub> and NaHCO<sub>3</sub>. 10 ml of solution requires 2.5 ml of 0.1 M H<sub>2</sub>SO<sub>4</sub> for neutralisation using phenolphthalein as an indicator. Methyl orange is then added when a further 2.5ml of 0.2M H<sub>2</sub>SO<sub>4</sub> was required. Calculate the amount of Na<sub>2</sub>CO<sub>3</sub> and NaHCO<sub>3</sub> in one litre of the solution.

Ans. 5.3 g/l; 4.2 g/l;

Solution. Phenolphthalein indicates half neutralization.

 $Na_2CO_3 + H^+ \rightarrow NaHCO_3 + Na^+$  ...(i)

Methyl orange indicates complete neutralisation

 $NaHCO_3 + H^+ \rightarrow Na^+ + H_2O + CO_2$  ...(ii)

: Volume of 0.1M H<sub>2</sub>SO<sub>4</sub> required for complete neutralisation =  $2 \times 2.5 = 5.0$  ml

 $0.1 \text{ M } H_2SO_4 \equiv 0.2 \text{ NH}_2SO_4$ 

[For  $H_2SO_4$  molarity = 2 × normality]

(: Mol. wt. of  $H_2SO_4 = 98$ , and eq. wt. of  $H_2SO_4 = 49$ )

 $\div 0.2 \text{ M } H_2 SO_4 \equiv 0.4 \text{ NH}_2 SO_4$ 

 $N_1 = normality of Na_2CO_3, V_1 = volume of Na_2CO_3 = 10 ml,$ 

 $N_2$  = normality of  $H_2SO_4 = 0.2$ , V2 = volume of  $H_2SO_4 = 5.0$  ml

$$\therefore N_1 V_1 = N_2 V_2 \Rightarrow N_1 \times 10 = 0.2 \times 5$$
  
$$\therefore N_1 = \frac{0.2 \times 5}{10} = 0.1 \text{ N}$$
  
$$\therefore \text{ Eq. wt. of } \text{Na}_2 \text{CO}_3 = \frac{1}{2} \times \text{molecular weight} = \frac{106}{2} = 53$$
  
Strength of Na<sub>2</sub>CO<sub>3</sub> = 53 × 0.1 = 5.3 g/l

[ $\therefore$  strength = normality × Eq. wt]

For neutralization with methyl orange, volume of 0.2 M

CLICK HERE

 $H_2SO_4$  used = 2.5 ml = 2.5 ml of 0.4 N  $H_2SO_4$ 

= 5 ml of 0.2 N H<sub>2</sub>SO<sub>4</sub> [ $: N_1V_1 = N_2V_2$ ]

From 5 ml of 0.2 N  $H_2SO_4$ , 2.5 ml is used for neutralising NaHCO<sub>3</sub> formed during first half neutralization  $Na_2CO_3$ 

: Volume of 0.2N H<sub>2</sub>SO<sub>4</sub> used for neutralisation of NaHCO<sub>3</sub> present in original solution = 5.0 - 2.5 = 2.5 ml

 $\div N_1V_1 = N_2V_2$ 

where  $N_1$  = Normality of NaHCO<sub>3</sub>,

 $N_2 = Normality of H_2SO_4 = 0.2$ ,

 $V1 = Volume of NaHCO_3 = 10 ml$ ,  $V_2 = Volume of H_2SO_4 = 2.5 ml$ 

$$N_1V_1 = N_2V_2 \Rightarrow N_1 \times 10 = 0.2 \times 2.5$$

 $N_1 = \frac{0.2 \times 2.5}{10} = 0.05 \,\mathrm{N}$ 

Eq. wt. of  $NaHCO_3 = 84$ 

 $\therefore$  Strength of NaHCO<sub>3</sub> = 84 × 0.05 = 4.2 g/l

Q.2. How many moles of sodium propionate should be added to one litre of an aqueous solution containing 0.020 mole of propionic acid to obtain a buffer solution of pH 4.75? What will be pH if 0.010 mole of hydrogen chloride is dissolved in the above buffer solution. Compare the last pH value with the pH of 0.010 molar HCl solution. Dissociation constant of propionic acid,  $K_a$  at 25°C =  $1.34 \times 10^{-5}$ .

**Ans.** 
$$1.5072 \times 10^{-2}$$
 mol, 4.09, 2

**Solution.** Suppose the number of moles of sodium propionate = x

Then 
$$pH = pK_a + \log \frac{[\text{Salt}]}{[\text{Acid}]}$$
  
4.75 =  $-\log(1.34 \times 10^{-5}) + \log\left(\frac{x}{0.02}\right)$ 





or 
$$4.75 = 5 - 0.1271 + \log \frac{x}{0.02}$$
  
or  $4.75 = 4.8729 + \log \frac{x}{0.02}$   
 $\log \frac{x}{0.02} = -0.1229$   
or  $\frac{x}{0.02} = \text{Antilog}[-0.1229]$  or  $\frac{x}{0.02} = 0.7536$   
 $x = 0.7536 \times 0.02 = 1.5072 \times 10^{-2} \text{ mol}$   
HC1  $\rightleftharpoons$  H<sup>+</sup> + Cl<sup>-</sup>  
0.01 mole 0.01 mole

When 0.01 mole of HCl is added, there is (0.01 + 0.02) M of propionic acid and (0.015 - 0.010) M of propionate. Therefore

$$pH = -\log(1.34 \times 10^{-5}) + \log\frac{0.005}{0.03} = 4.09$$

The pH of a 0.010 molar HCl solution =  $-\log 10^{-2} = 2$ 

Q.3. One mole of nitrogen is mixed with three moles of hydrogen in a 4 litre container. If 0.25 per cent of nitrogen is converted to ammonia by the following reaction

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g),$ 

calculate the equilibrium constant (Kc) in concentration units. What will be the value of Kc for the following equilibrium ?

CLICK HERE

≫

$$\frac{1}{2}$$
N<sub>2</sub>(g) +  $\frac{3}{2}$ H<sub>2</sub>(g)  $\rightleftharpoons$  NH<sub>3</sub>(ag)

Ans.  $1.48 \times 10^{-5} \ 12 \ mol^{-2}$ ,  $3.82 \times 10^{-3} \ litre \ mol^{-1}$ 

## Solution.

| Initial moles | 1                    | 3                      |                      | 0                           |
|---------------|----------------------|------------------------|----------------------|-----------------------------|
|               | N <sub>2</sub> (g)   | + 3H <sub>2</sub> (g)  | $\rightleftharpoons$ | $2NH_3(g)$                  |
| Eq. moles     | 1 – 0.0025           | 3 - 0.0075             |                      | 2 × 0.0025                  |
| Eq. conc.     | $\frac{1-0.0025}{4}$ | $\frac{3 - 0.0075}{4}$ |                      | $\frac{2 \times 0.0025}{4}$ |

Now we know that  $K_c = \frac{[NH_3]^2}{[N_2][H_2]^3}$ 

Since 0.0025 and 0.0075 are very small, 1–0.0025 and 3–0.0075 may be taken as 1 and 3 respectively.

Substitute the various values

$$K_{e} = \frac{\left(\frac{2 \times 0.0025}{4}\right)^{2}}{\left[\frac{1}{4}\right] \left[\frac{3}{4}\right]^{3}} = \frac{0.0025 \times 0.0025}{4} \times \frac{4 \times 4 \times 4 \times 4}{3 \times 3 \times 3}$$

$$= 1.48 \times 10^{-5} \, \text{litre}^2 \, \text{mol}^{-2}$$

For the equilibrium,

$$\frac{1}{2} N_2(g) + \frac{3}{2} H_2(g) \iff NH_3(g)$$

$$K_c' = \frac{[NH_3]}{[N_2]^{\frac{1}{2}} [H_2]^{\frac{3}{2}}} = \sqrt{K_c}$$

$$= \sqrt{(1.48 \times 10^{-5} \text{ litre}^2 \text{ mol}^{-2})}$$

$$= 3.82 \times 10^{-3} \text{ litre mol}^{-1}$$

Q.4. Twenty ml. of 0.2 M sodium hydroxide is added to 50 ml. of 0.2 M acetic acid to give 70 ml of the solution. What is the pH of this solution? Calculate the additional volume of 0.2 M NaOH required to make the pH of the solution 4.74. The ionization constant of acetic acid is  $1.8 \times 10^{-5}$ .

Ans. 4.5686, 4.86 ml

Solution. TIPS/Formulae :

(i) Find the moles of each species after reaction.

(ii) 
$$pH = -\log K_a + \log \left[\frac{\text{salt}}{\text{Acid}}\right]$$

Given, NaOH 0.2 M, 20 ml; CH<sub>3</sub>COOH 0.2 M, 50 ml  $K_a = 1.8 \times 10^{-5}$ 

V of 0.2M NaOH required to make pH = 4.74 = ?

From the chemical reaction

 $\underbrace{\text{CH}_{3}\text{COOH} + \underset{20 \text{ ml}}{\text{ml}} \rightarrow \underbrace{\text{CH}_{3}\text{COONa} + H_{2}\text{O}}_{20 \text{ ml}}}_{20 \text{ ml}}$ 

It is evident that 70 ml of the product will contain

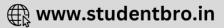
(i) 30 ml of 0.2 M unused CH3COOH

[unused  $CH_3COOH = 50 - 20 = 30 \text{ ml}$ ]

(ii) 20 ml of CH<sub>3</sub>COONa.

: No. of moles of CH<sub>3</sub>COOH in solution

 $= \frac{0.2}{1000} \times 30 = 0.006 \text{ mole}$ Similarly, No. of moles of CH<sub>3</sub>COONa solution


$$= \frac{0.2}{1000} \times 20 = 0.004 \text{ moles}$$
$$pH = -\log K_a + \log \frac{[\text{Salt}]}{[\text{Acid}]}$$

Substituting the values of the various values

$$pH = -\log 1.8 \times 10^{-5} + \log \frac{0.004}{0.006}$$
$$= 4.7447 - 0.1761 = 4.5686$$

Calculation of the additional volume of 0.2 M NaOH required to make pH of solution 4.74.

$$pH = -\log K_a + \log \frac{[Salt]}{[Acid]}$$
  
or 4.74 = -log 1.8 × 10<sup>-5</sup> + log  $\frac{[Salt]}{[Acid]}$   
or 4.74 = 4.7447 + log  $\frac{[Salt]}{[Acid]}$   
 $\therefore \log \frac{[Salt]}{[Acid]} = 0.0047$  or  $\frac{[Salt]}{[Acid]} = \frac{1}{1.011}$ 



**NOTE THIS STEP :** Let x ml. be the volume of additional 0.2 M NaOH added to make the pH of the solution 4.74. This will further neutralise x ml. of 0.2 M CH<sub>3</sub>COOH and produce x ml. of 0.2 M sodium acetate. The resulting solution (70 + x) will now contain

(i) (30 - x) ml of 0.2 M acetic acid.

(ii) (20 + x) ml of 0.2 M sodium acetate.

Number of moles of acetic acid in (70 + x) ml. solution

$$= \frac{0.2}{1000} \times (30 - x) = 2 \times 10^{-4} (30 - x)$$

Number of moles of  $CH_3COONa$  in (70 + x) ml. solution

$$= \frac{0.2}{1000} \times (20 + x) = 2 \times 10^{-4} (20 + x)$$

Therefore, 
$$\frac{[Salt]}{[Acid]} = \frac{2 \times 10^{-4} (20 + x)}{2 \times 10^{-4} (30 - x)} = \frac{20 + x}{30 - x}$$

$$\frac{1}{1.011} = \frac{20+x}{30-x} \text{ or } 20.22 + 1.011x = 30-x$$

or 
$$1.001 \text{ x} + \text{x} = 30 - 20.22$$
;  $2.011 \text{x} = 9.78 \text{ or } \text{x} = 4.86$ 

Therefore, the additional volume of 0.2 M NaOH required to make the pH of the solution 4.74 is 4.86 ml.

Q.5. The dissociation constant of a weak acid HA is  $4.9 \times 10^{-8}$ . After making the necessary approximations, calculate (i) percentage ionization, (ii) pH and (iii) OH<sup>-</sup> concentration in a decimolar solution of the acid. Water has a pH of 7.

CLICK HERE

**Ans.** (i)  $7 \times 10^{-2\%}$ , (ii) 4.1549, (iii)  $1.43 \times 10^{-10}$  mol/l

Solution. (i) From the dissociation of weak acid HA,

 $HA \rightleftharpoons H^+ + A^-$ 

It  $\alpha$  is the degree of ionization of the acid HA, then [H<sup>+</sup>] = 0.1  $\alpha$  [: the acid is decimolar] [A<sup>-</sup>]= 0.1  $\alpha$ ; [HA] = 0.1 (1 -  $\alpha$ )

Therefore,

$$K_{a} = \frac{[\mathrm{H}^{+}][\mathrm{A}^{-}]}{[\mathrm{HA}]} = \frac{0.1\alpha \times 0.1\alpha}{0.1(1-\alpha)}$$
$$= \frac{0.1\alpha \times 0.1\alpha}{0.1} \quad (\text{since acid is weak, } 1-\alpha = 1)$$
$$K_{a} = 0.1\alpha^{2} \text{ or } 4.9 \times 10^{-8} = 0.1\alpha^{2}$$
$$\mathrm{or } \alpha^{2} = \frac{4.9 \times 10^{-8}}{0.1} \text{ or } \alpha = 7 \times 10^{-4}$$

: Percentage ionization =  $100 \times 7 \times 10^{-4} = 7 \times 10 - 2\%$ 

(ii) Calculation of pH

 $[H^{\scriptscriptstyle +}]=0.1a=0.1\times7\times~10^{-4}~mole/litre~[\because\lambda=7~x~10^{-4}]$ 

 $= 7 \times 10^{-5}$  mole/litre

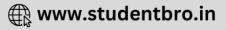
Now since  $pH = -\log [H^+] = -\log [7 \times 10^{-5}]$ 

 $= 5 - \log 7 = 5 - 0.8451 = 4.1549$ 

(iii) Concentration of OH<sup>-</sup> in decimolar solution

 $[H^+] = 7 \times 10^{-5}$  mole per litre

Now,  $K_w = [H+]$  [OH–] or  $1.0 \times 10^{-14} = 7 \times 10^{-5} \times [OH^-]$ 


:  $[OH^{-}] = \frac{1 \times 10^{-14}}{7 \times 10^{-5}} = 1.43 \times 10^{-10}$  mole per litre

Q.6. A solution contains a mixture of Ag (0.10 M) and  $Hg_2^{++}$  (0.10 M) which are to be separated by selective precipitation.

Calculate the maximum concentration of iodide ion at which one of them gets precipitated almost completely. What percentage of that metal ion is precipitated?

$$[K_{sp} : AgI = 8.5 \times 10^{-17}; Hg_2I_2 = 2.5 \times 10^{-26}]$$





**Ans.**  $5.0 \times 10^{-13}$  M, 99.83%

Solution. TIPS/Formulae :

For precipitation to occur ionic product  $> K_{sp}$ .

Mixture solution contains 0.1 M Ag+ and 0.1 Mg  $Hg_2^{2+}$ .

 $K_{sp}$  of  $Hg_2I_2 = 2.5 \times 10^{-26}$  is much smaller than  $K_{sp}$  of AgI which is  $8.5 \times 10^{-17}$ .

 $[I^-]$  concentration needed to precipitate  $Hg_2I_2$  is calculated as :

Hg<sub>2</sub>I<sub>2</sub> 
$$\rightleftharpoons$$
 Hg<sub>2</sub><sup>2+</sup> + 2I<sup>-</sup>  
[I<sup>-</sup>] =  $\sqrt{\frac{K_{sp}}{[Hg_2^{2+}]}} = \sqrt{\frac{2.5 \times 10^{-26}}{0.1}} = 5.0 \times 10^{-13} \text{ M}$ 

Similarly, [I<sup>-</sup>] concentration needed to precipitate AgI is :

AgI
$$\longrightarrow$$
 Ag<sup>-</sup> + I<sup>-</sup>  
[I<sup>-</sup>] =  $\frac{K_{sp}}{[Ag^+]} = \frac{8.5 \times 10^{-17}}{0.1} = 8.5 \times 10^{-16} \text{ M}$ 

NOTE : Since [I<sup>-</sup>] concentration needed to ppt. AgI is smaller than that needed to ppt. Hg<sub>2</sub>I<sub>2</sub>, AgI is completely precipitated first. AgI starts precipitation with [I<sup>-</sup>] =  $8.5 \times 10^{-16}$  M.

However,  $Hg_2I_2$  starts precipitating with AgI only when molar concentration of  $I^-$  reaches  $5.0 \times 10^{-13}$ M.

 $[Ag^+]$  left when  $Hg_2I_2$  begins to ppt. is given by

$$\frac{K_{sp} \text{ of } \text{AgI}}{[\Gamma]_{Hg_2I_2}} = \frac{8.5 \times 10^{-17}}{5.0 \times 10^{-13}} = 1.7 \times 10^{-4} \text{ M}$$
  
Thus % [Ag<sup>+</sup>] left unprecipitated =  $\frac{1.7 \times 10^{-4}}{0.1} \times 100$   
= 0.17%

Q.7. One mole of Cl<sub>2</sub> and 3 moles of PCl<sub>5</sub> are placed in a 100 litre vessel heated to 227°C. The equilibrium pressure is 2.05 atmosphere. Assuming ideal behaviour, calculate the degree of dissociation for PCl<sub>5</sub> and K<sub>p</sub> for the reaction :

 $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g).$ 

Ans. 33.3%, 0.41

**Solution.** Let x be the degree of dissociation of  $PCl_5(g)$ , then

 $\begin{array}{rcl} & \operatorname{PCl}_5(g) & \rightleftharpoons & \operatorname{PCl}_3(g) & + & \operatorname{Cl}_2(g) \\ \text{Initial} & 3 & 0 & 1 \\ \text{At equilibrium} & 3(1-x) & 3x & 1+3x \end{array}$ 

∴ Total number of moles at equilibrium

= 3(1 - x) + 3x + 1 + 3x = 3(1 + x) + 1

Using the gas equation : PV = nRT

$$\therefore n = \frac{PV}{RT}$$

Here, P = 2.05 atm., V = 100 litres, R = 0.082 atm/deg.,

T = 273 + 227 = 500 K  
∴ 
$$n = \frac{2.05 \times 100}{0.082 \times 500} = 5$$
 ∴  $3(1+x)+1=5$ 

or 
$$3 + 3x + 1 = 5$$
 or  $3x = 5 - 4$  or  $x = \frac{1}{3} = 0.333$ 

Hence perecentage dissociation of  $PCl_5 = 0.333 \times 100 = 33.3\%$ 

Calculation of K<sub>P</sub> for the reaction :

$$K_{p} = \frac{[PCl_{3}][Cl_{2}]}{[PCl_{5}]} = \frac{\left[\frac{3xP}{3(1+x)+1}\right]\left[\frac{(1+3x)P}{3(1+x)+1}\right]}{\left[\frac{3(1-x)}{3(1+x)+1}P\right]}$$

$$= \frac{3x(3x+1)}{4+3x} \times \frac{1P}{3(1-x)}$$
$$= \frac{(3x^2+x) \times P}{(4+3x)(1-x)} = \frac{x(3x+1) \times P}{(4+3x)(1-x)}$$

Substituting, x = 1/3 and P = 2.05 atm., we get

$$K_{p} = \frac{\frac{1}{3} \left( 3 \times \frac{1}{3} + 1 \right) \times 2.05}{\left( 4 + 3 \times \frac{1}{3} \right) \left( 1 - \frac{1}{3} \right)} = \frac{4.1}{10} = 0.41$$

**Q.8.** Arrange the following in :

- (i) increasing bond length :  $F_2$ ,  $N_2$ ,  $Cl_2$ ,  $O_2$
- (ii) increasing acid strength : HClO<sub>3</sub>, HClO<sub>4</sub>, HClO<sub>2</sub>, HClO
- (iii) increasing basicity : H<sub>2</sub>O, OH<sup>-</sup>, CH<sub>3</sub>OH, CH<sub>3</sub>O<sup>-</sup>

(iv) Arrange the following oxides in the decreasing order of Bronsted basicity :

BaO, SO<sub>3</sub>, CO<sub>2</sub>, Cl<sub>2</sub>O<sub>7</sub>, B<sub>2</sub>O<sub>3</sub>

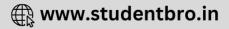
**Ans.** (i)  $N_2 < O_2 < F_2 < Cl_2$ ,

(ii)  $HClO < HClO_2 < HClO_3 < HClO_4$ 

(iii)  $H_2O < CH_3OH < OH - < CH_3O^-$ 

(iv)  $BaO > B_2O_3 > CO_2 > SO_3 > Cl_2O_7$ 

**Solution.** (i)  $N_2 < O_2 < F_2 < Cl_2$ 


i.e.,  $N \equiv N$ ; O < O; F,F; Cl,Cl

NOTE :

As the number of bonds increases the bond length decreases.

So  $N_2 < O_2 <$  halogens. Among  $F_2$  and  $Cl_2$  bond length of  $Cl_2$  will be higher because of higher atomic radii.





(ii) Among oxyacids of the same element, acidic nature increases with its oxidation number, e.g.,

 $\begin{array}{rrrr} HOC1 &< HOC1O &< HOC1O_2 &< HOC1O_3 \\ \mbox{o.n. of C1} & +1 & +3 & +5 & +7 \end{array}$ 

(*iii*) H<sub>2</sub>O < CH<sub>3</sub>-ÖH < OH < OCH<sub>3</sub>

Weaker the base stronger is its conjugate acids

 $H_3O^+>CH_3O^+_{H_2}>H_2O>CH_3OH$  (Decreasing acidic order of the conjugate bases.)

(iv)  $BaO > B_2O_3 > CO_2 > SO_3 > Cl_2O_7$ 

Basicity increases with increase in oxidation state

(Ba = +2, B = +3, C = +4, S = +6, Cl = +7).

Q.9. The [H<sup>+</sup>] in 0.2 M solution of formic acid is  $6.4 \times 10^{-3}$  mole litre<sup>-1</sup>. To this solution sodium formate is added so as to adjust the concentration of sodium formate to one mole litre<sup>-1</sup>. What wil be pH of this solution? K<sub>a</sub> for HCOOH is 2.4  $\times 10^{-4}$  and degree of dissociation of HCOONa is 0.75.

Ans. 4.19

Solution. TIPS/Formulae :

For acidic buffer  $pH = -\log K_a + \log \frac{[\text{Salt}]}{[\text{Acid}]}$ 

Calculation of concentration of HCOOH.

Here, c = 0.2 M;  $[H^+] = 6.4 \times 10^{-3}$ 

 $[H^+] = c \alpha \text{ or } \alpha = \frac{[H^+]}{c} \implies \alpha = \frac{6.4 \times 10^{-3}}{0.2} = 3.2 \times 10^{-2}$ 

**NOTE :** Thus the degree of dissociation of HCOOH is very low which on addition of sodium formate is further suppressed due to common ion effect.

Since the degree of dissociation is very low  $(3.2 \times 10^{-2})$ , it can be neglected and hence [HCOOH] can be taken as 0.2 M.





Calculation of concentration of HCOO<sup>-</sup>, [HCOO<sup>-</sup>]

It can be obtained in the following manner :

HCOONa  $\longrightarrow$  HCOO<sup>-</sup> + Na<sup>+</sup> At start 1 0 0 At equb. 0.25 0.75 0.75  $\therefore$  [HCOO<sup>-</sup>]=0.75 For acidic buffer  $pH = -\log K_a + \log \frac{[Salt]}{[acid]}$  $= -\log 2.4 \times 10^{-4} + \log \frac{0.75}{0.20} = 4.19$ 

#### Q.10. The equilibrium constant of the reaction

 $A_2(g) + B_2(g) \rightleftharpoons 2AB(g)$ 

at 100°C is 50. If a one litre flask containing one mole of  $A_2$  is connected to a two litre flask containing two mole of  $B_2$ , how many mole of AB will be formed at 373°C?

 $A_2(g) + B_2(g) \rightleftharpoons 2AB(g)$ 

Ans. 1.886

#### Solution.

$$A_{2}(g) + B_{2}(g) \rightleftharpoons 2AB(g)$$
At start 1 2 0  
At equ. 1-x 2-x 2x  

$$\therefore [A_{2}] = \frac{1-x}{3}, [B_{2}] = \frac{2-x}{3}, [AB] = \frac{2x}{3}$$

$$\therefore K = \frac{(2x/3)^{2}}{[(1-x)/3][2-x)/3]} = 50$$

On solving we get,  $23x^2 - 75x + 50 = 0$ ; x = 2.317 or 0.943

The value 2.317 is inadmissable because initial concentration of reactants is 2 moles and so x = 0.943

CLICK HERE

≫

🕀 www.studentbro.in

 $\therefore$  Moles of AB formed =  $2 \times 0.943 = 1.886$ 

# Q.11. The solubility of Mg(OH)<sub>2</sub> in pure water is $9.57 \times 10^{-3}$ g/litre. Calculate its solubility (in g/litre) in 0.02 M Mg(NO<sub>3</sub>)<sub>2</sub> solution.

Ans.  $8.7 \times 10^{-4}$  g/litre

Solution. Solubility of Mg(OH)<sub>2</sub> in water

 $S = 9.57 \times 10^{-3} \text{ g/litre } = \frac{9.57 \times 10^{-3}}{58} = 1.65 \times 10^{-4} \text{ mole/litre}$ 

 $K_{sp} = (S) (2S)^2 = 4S3 = 4 (1.65 \times 10^{-4})^3 = 1.8 \times 10^{-11} \text{ approx.}$ 

Calculation of solubility of Mg(OH)<sub>2</sub>, say, x, in Mg(NO<sub>3</sub>)<sub>2</sub> or  $[Mg^{2+}] = x + 0.02$ ;  $[OH^{-}] = x$ 

 $K_{sp} = [Mg^{2+}] [2OH^{-}]^2$  or  $1.8 \times 10^{-11} = (x + 0.02) (2x)^2$ 

Neglecting x in comparison to 0.02 (common ion effect)

$$\Rightarrow 4x^2 = \frac{1.8 \times 10^{-11}}{0.02} = 9 \times 10^{-10} \text{ or } 2x = 3 \times 10^{-5}$$

 $x = 1.5 \times 10^{-5}$  moles/litres

 $= 1.5 \times 58 \times 10^{-5} = 8.7 \times 10^{-4}$  g/litre.

Q.12. What is the pH of the solution when 0.20 mole of hydrochloric acid is added to one litre of a solution containing.

(i) 1 M each of acetic acid and acetate ion?

(ii) 0.1 M each of acetic acid and acetate ion?

Assume the total volume is one litre.

 $K_a$  for acetic acid =  $1.8 \times 10^{-5}$ .

**Ans.** 4.5686, 1

**Solution.** (i) Amount of HCl added = 0.20 mole



 $[H^+] = 0.2 \text{ g litre}^{-1}$ 

NOTE : Added H<sup>+</sup> ions will combine with the acetate ions forming acetic acid with the result concentration of acetate ions will decrease while that of acetic acid will increase.

|                 | CH <sub>3</sub> COO- | $+$ HC1 $\longrightarrow$ | CH <sub>3</sub> COOH | [+C1- |
|-----------------|----------------------|---------------------------|----------------------|-------|
| before reaction | 1                    | 0.2                       | 1                    | 0     |
| after reaction  | 0.8                  | 0                         | 1.2                  | 0.2   |

:. Concentration of acetate ions after adding 0.20 mole of HCl.

 $[CH_3COO^-] = 1.0 - 0.2 = 0.8$  mole

Similarly, concentration of acetic acid,

$$[CH_3COOH] = 1.0 + 0.2 = 1.2$$
 mole

Now,  $pH = -\log K_a + \log \frac{[Salt]}{[Acid]}$ =  $-\log 1.8 \times 10^{-5} + \log \frac{0.8}{1.2}$ pH = 4.7447 + 0.3010 - 0.4771 = 4.5686

(ii) Amount of HCl added = 0.20 mole

Out of 0.2 mole of  $[H^+]$  added, 0.1 mole will combine with 0.1 mole of CH<sub>3</sub>COO<sup>-</sup> forming 0 mole of CH<sub>3</sub>COOH.

|                 | CH <sub>3</sub> COO | - + H <sup>+</sup> - | → CH <sub>3</sub> COOH | [+C1- |
|-----------------|---------------------|----------------------|------------------------|-------|
| before reaction | 0.1                 | 0.2                  | 0.1                    | 0     |
| after reaction  | 0                   | 0.1                  | 0.2                    | 0.1   |

: Total concentration of acetic acid [CH<sub>3</sub>COOH]

= 0.1 + 0.1 = 0.2 mole

In presence of [H<sup>+</sup>], CH<sub>3</sub>COOH will not ionize.

Therefore, pH of the solution will be due to the presence of  $H^+$  of HCl, i.e. 0.2 - 0.1 = 0.1 mole HCl

 $pH = -log [H^+] = -log [0.1] = 1$ 





#### Q.13. At a certain temperature equilibrium constant (K<sub>c</sub>) is 16 for the reaction.

 $SO_2(g) + NO_2(g) \rightleftharpoons SO_3(g) + NO(g)$ 

If we take one mole each of all the four gases in a one litre container, what would be the equilibrium concentrations of NO(g) and  $NO_2(g)$ ?

Ans. 1.6 moles, 0.4 moles

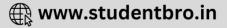
**Solution.** Initial concentration of each gas = 1 mole

Let the No. of moles of NO<sub>2</sub> reacted at equilibrium = x

Then,  $SO_2(g) + NO_2(g) \rightleftharpoons SO_3(g) + NO_2(g)$ At equilibrium (1-x) (1-x) (1+x) (1+x)Now we know that,  $\frac{[SO_3][NO]}{[SO_2][NO_2]} = K_c$ or  $\frac{(1+x/V)(1+x/V)}{(1-x/V)(1-x/V)} = 16$  or  $\frac{(1+x)^2}{(1-x)^2} = 16$  ( $\because V = 1L$ ) or  $\frac{1+x}{1-x} = 4$  or 1+x=4-4x or 5x=3 $x = \frac{3}{5} = 0.6$ 

 $\therefore$  Thus the concentration of NO at equilibrium

= 1 + x = 1 + 0.6 = 1.6 moles


Concentration of NO2 at equilibrium

= 1 - x = 1 - 0.6 = 0.4 moles

Q.14.  $N_2O_4$  is 25% dissociated at 37°C and one atmosph er e pressure. Calculate (i)  $K_p$  and (ii) the percentage dissociation at 0.1 atmosphere and 37°C.

Ans. 0.266 atm, 64%





#### Solution. (i)

$$N_2O_4 \rightleftharpoons 2NO_2$$
Before dissociation 1 0
After dissociation 1-\alpha 2\alpha
$$\therefore \text{ Total moles} = 1 - \alpha + 2\alpha = 1 + \alpha$$

$$\therefore K_p = \frac{(p_{NO_2})^2}{p_{N_2O_4}} = \frac{\left(\frac{2\alpha}{1+\alpha} \times P\right)^2}{\left(\frac{1-\alpha}{1+\alpha} \times P\right)}$$

where P is total pressure

$$K_{p} = \frac{\left(\frac{2 \times 0.25 \times 1}{1 + 0.25}\right)^{2}}{\left(\frac{1 - 0.25}{1 + 0.25} \times 1\right)} = 0.266 \text{ atm} \quad [\because a = 0.25]$$

(ii) 
$$K_p = \frac{4\alpha^2 P^2 \times (1+\alpha)}{(1+\alpha)^2 (1-\alpha) \times P} = \frac{4\alpha^2 P}{(1+\alpha)(1-\alpha)}$$
  
 $0.266 = \frac{4\alpha^2 \times 0.1}{1-\alpha^2} \implies \alpha = 0.64$ 

Q.15. How many gram-mole of HCl will be required to prepare one litre of buffer solution (containing NaCN and HCl) of pH 8.5 using 0.01 gram formula weight of NaCN?

K dissociation (HCN) =  $4.1 \times 10^{-10}$ .

**Ans.** 8.85 × 10–3 M

**Solution.** TIPS/Formulae :

 $pH = pK_a + \log\left(\frac{\text{Salt}}{\text{Acid}}\right)$ 

If x moles of HCl are added then they will combine with

NaCN to form x moles of very weak acid HCN.

 $NaCN + HC1 \rightarrow NaC1 + HCN$ At equilibrium : (0.01-x) x x x x For an acidic buffer,  $pH = -\log K_a + \log \frac{[Salt]}{[Acid]}$   $\therefore 8.5 = -\log 4.1 \times 10^{-10} + \log \left(\frac{0.01 - x}{x}\right)$ or  $8.5 = (10 - \log 4.1) + \log \left(\frac{0.01 - x}{x}\right)$ 

$$\log\left(\frac{0.01 - x}{x}\right) = -0.8872 \quad [\log 4.1 = 0.6128]$$

$$\frac{0.01 - x}{x} = 0.1296$$
  
x = 8.85 × 10<sup>-3</sup> M = 8.85 × 10-3 moles of HC

#### Q.16. The equilibrium constant K<sub>p</sub> of the reaction :

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

is 900 atm. at 800 K. A mixture containing SO<sub>3</sub> and O<sub>2</sub> having initial partial pressure of 1 and 2 atm. respectively is heated at constant volume to equilibrate. Calculate the partial pressure of each gas at 800 K.

**Ans.**  $Pso_2 = 0.0236$  atm,  $Po_2 = 2.0118$  atm,  $Pso_3 = 0.9764$  atm

**Solution.** NOTE : Since the reaction is carried out at constant volume, change in partial pressure of a species will be directly proportional to the change in its amount. Hence, we can write

 $\begin{array}{cccc} 2\mathrm{SO}_2(\mathrm{g}) &+& \mathrm{O}_2(\mathrm{g}) \rightleftharpoons 2\mathrm{SO}_3(\mathrm{g}) \\ \mathrm{Initial \, pressure} & 0 & 2 \, \mathrm{atm} & 1 \, \mathrm{atm} \\ \mathrm{Equb. \, pressure} & 2x & 2 \, \mathrm{atm} + x & 1 \, \mathrm{atm} - 2x \end{array}$ 

Where 2 x is the change in partial pressure of SO<sub>3</sub> at equilibrium.

Substituting the expression of partial pressure in the expression. For K<sub>b</sub>, we get

$$K_{p} = \frac{(p_{SO_{3}})^{2}}{(p_{SO_{2}})^{2}(p_{O_{2}})}$$





or 900 atm<sup>-1</sup> = 
$$\frac{(1 \text{ atm} - 2x)^2}{(2x)^2 (2 \text{ atm} + x)}$$

Assuming x is very small as compared to 1

900 atm<sup>-1</sup> =  $\frac{1 \text{ atm}^2}{(4x^2)(2 \text{ atm})}$ 

On usual calculations, x = 0.0118 atm

Thus  $Pso_2 = 2x = 2 \times 0.0118$  atm = 0.0236 atm  $Po_2 = 2$  atm + x = 2 + 0.0118 = 2.0118 atm  $Pso_3 = 1$  atm - 2x = 1 - 0.0236 = 0.9764 atm

Q.17. Freshly precipitated aluminium and magnesium hydroxides are stirred vigorously in a buffer solution containing 0.25 mole/l of ammonium chloride and 0.05 mole/l of ammonium hydroxide. Calculate the concentration of aluminium and magnesium ions in solution:

$$\begin{split} \mathbf{K}_{b}[\mathbf{NH}_{4}\mathbf{OH}] &= \mathbf{1.80}\times\mathbf{10^{-5}}\\ \mathbf{K}_{sp} \; [\mathbf{Mg}(\mathbf{OH})_{2}] &= \mathbf{6}\times\mathbf{10^{-10}}\\ \mathbf{K}_{sp} \; [\mathbf{Al}(\mathbf{OH})_{3}] &= \mathbf{6}\times\mathbf{10^{-32}} \end{split}$$

**Ans.** 46.29 mol ion/l,  $1.286 \times 10^{-15}$  mol ion/l

Solution. TIPS/Formulae :

p(OH) for basic buffer  $= pK_b + \log\left(\frac{\text{Salt}}{\text{Base}}\right)$ We know that  $pOH=pK_b + \log\frac{[\text{Salt}]}{[\text{Base}]}$  or  $-\log 1.8 \times 10^{-5} + \log\frac{0.25}{0.05}$  $pOH = 5 - \log 1.8 + \log 5 = 5.6989 - 0.2552$  $- \log [OH^-] = 5.4437$ ;  $\log [OH^-] = -5.4437$  $[OH^-] = 3.5999 \times 10^{-6}$  [Taking antilog]

$$K_{sp} \text{ for } Mg(OH)_{2} = [Mg^{2+}][OH^{-}]^{2}$$
  

$$6 \times 10^{-10} = [Mg^{2+}][3.5999 \times 10^{-6}]^{2}$$
  

$$[Mg^{2+}] = \frac{6 \times 10^{-10}}{12.9598 \times 10^{-12}} = 0.4629 \times 10^{2}$$
  

$$= 46.29 \text{ mole ion per litre}$$
  

$$K_{sp} \text{ for } Al(OH)_{3} = [Al^{3+}] [OH^{-}]_{3}$$
  

$$6 \times 10^{-32} = [Al^{3+}] (3.5999 \times 10^{-6})^{3}$$
  

$$[Al^{3+}] = \frac{6 \times 10^{-32}}{(3.5999 \times 10^{-6})^{3}} = 1.286 \times 10^{-15} \text{ mol ion/l}$$

Q.18. For the reaction :  $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ 

hydrogen gas is introduced into a five litre flask at 327°C, containing 0.2 mole of CO(g) and a catalyst, until the pressure is 4.92 atm. At this point 0.1 mole of CH<sub>3</sub>OH(g) is formed. Calculate the equilibrium constant, K<sub>p</sub> and K<sub>c</sub>.

**Ans.** 277.78 mol<sup>-2</sup> l<sup>2</sup>, 0.1144 atm<sup>-2</sup>

Solution. Let the total number of moles of all gases at equilibrium point = n

$$P = 4.92 \text{ atm.}$$
  $V = 51$   
 $R = 0.0821 \text{ atm.} 1 \text{ mol}^{-1} \text{ K}^{-1}$   $T = 273 + 327 = 600 \text{ K}$ 

By applying the formula PV = nRT

$$n = \frac{PV}{RT} = \frac{4.92 \times 5}{0.0821 \times 600} = 0.5$$
 moles

(i) Calculation of the number of moles of the individual gases at equilibrium point.

No. of moles of CH3OH formed = 0.1 (Given)

- $\therefore$  No. of moles of CO (also) = 0.1
- [ $\therefore$  moles of CO = moles of CH<sub>3</sub>OH formed]



Hence No. of moles of  $H_2 = 0.5 - (0.1 + 0.1) = 0.3$ 

: Molar concentration of various species will be

$$[CH_{3}OH] = [CO] = \frac{0.1}{5} = 0.02; [H_{2}] = \frac{0.3}{5} = 0.06$$
$$\therefore K_{e} = \frac{[CH_{3}OH]}{[CO][H_{2}]^{2}} = \frac{0.02}{0.02 \times (0.06)^{2}} = 277.78 \text{ mol}^{-2} l^{2}$$

(ii) Calculation of Kp. We know that

$$K_{\rm p} = K_{\rm c} \times (\rm RT)^{\Delta n} = 277.78 \times (0.0821 \times 600)^{-2} (\Delta n = 1 - 3 = -2)$$
$$= \frac{277.78}{2426.54} = 0.1144 \text{ atm}^{-2}$$

Q.19. What is the pH of 1.0 M solution of acetic acid? To what volume must one liter of this solution be diluted so that the pH of the resulting solution will be twice the original value? Given :  $Ka = 1.8 \times 10^{-5}$ .

#### **Ans.** 2.3724, $2.78 \times 10^4$ litres

Case I.  $CH_3COOH \rightleftharpoons CH_3COO^- + H^+$ At start 1 0 0 0 At equib.  $1-\alpha$   $\alpha$   $\alpha$   $[H^+] = c\alpha = c \sqrt{\frac{K_a}{c}} = \sqrt{K_a c}$   $\therefore [H^+] = \sqrt{1.8 \times 10^{-5} \times 1} = 4.24 \times 10^{-3} M$ Thus pH =  $-\log H^+ = -\log 4.24 \times 10^{-3} = 2.3724$ Case II. pH after dilution =  $2 \times \text{ original pH}$ =  $2 \times 2.3724 = 4.7448$ Let conc. after dilution =  $c_1$ 

and degree of dissociation =  $\alpha_1$ 

Since  $pH = -\log [H^+]$ 

$$4.7448 = -\log [H^+]$$
$$[H^+] = 1.8 \times 10^{-5} = c_1 \alpha_1 \therefore c_1 \alpha_1 = 1.8 \times 10^{-5}$$

Dissociation constant

Since 
$$K_a = \frac{[CH_3COO^-][H^+]}{[CH_3COOH]}$$
  
=  $\frac{(c_1\alpha_1)(c_1\alpha_1)}{c_1[1-\alpha_1]} = \frac{c_1\alpha^2}{(1-\alpha_1)}$   
 $1.8 \times 10^{-5} = \frac{1.8 \times 10^{-5} \times \alpha_1}{1-\alpha_1} \therefore \alpha_1 = 0.5$ 

Substituting the value of  $\alpha_1$  in the following relation

$$c_1 \alpha_1 = [\text{H}^+]; c_1 \times 0.5 = 1.8 \times 10^{-5}$$
  
 $c_1 = \frac{1.8 \times 10^{-5}}{0.5} = 3.6 \times 10^{-5} \text{ M}$ 

Since the number of moles of CH<sub>3</sub>COOH before and after dilution will be same

: Mole of  $CH_3COOH$  before dilution = Mole of  $CH_3COOH$  after dilute

(: Mole =  $M \times V_{\text{in litre}}$ ) 1 × 1 = 3.6 × 10<sup>-5</sup> × V  $\Rightarrow$  V = 2.78 × 10<sup>4</sup> litres

Q.20. The solubility product of  $Ag_2C_2O_4$  at 25°C is  $1.29 \times 10^{-11}$  mol<sup>3</sup> l<sup>-3</sup>. A solution of  $K_2C_2O_4$  containing 0.1520 mole in 500 ml water is shaken at 25°C with excess of  $Ag_2CO_3$ till the following equilibrium is reached :

 $Ag_2CO_3 + K_2C_2O_4 \Longrightarrow Ag_2C_2O_4 + K_2CO_3$ 

At equilibrium the solution contains 0.0358 mole of  $K_2CO_3$ . Assuming the degree of dissociation of  $K_2C_2O_4$  and  $K_2CO_3$  to be equal, calculate the solubility product of  $Ag_2CO_3$ .

**Ans.**  $3.794 \times 10^{-12} \text{ mol}^3 \text{ } 1^{-3}$ 

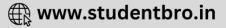




Solution.

Molar concentration of  $K^{}_2 C^{}_2 O^{}_4 \, or \, C^{}_2 O^{2-}_4$  left unreacted

$$=\frac{0.1162}{0.5}=0.2324$$
 moles  $l^{-1}$  [: 500 ml = 0.5 L]


 $[K_2CO_3] = [CO_3^{2-}]$  at equilibrium

$$=\frac{0.0358}{0.5}=0.07156$$
 moles  $l^{-1}$ 

Given that  $K_{sp}$  for  $Ag_2C_2O_4$  = 1.29  $\times$  10  $^{-11}$  mol^3  $l^{-3}$  at 25°C

So, 
$$[Ag^+]^2 [C_2O_4^{2^-}] = 1.29 \times 10^{-11}$$
  
or  $[Ag^+]^2 \times 0.2324 = 1.29 \times 10^{-11}$   
Hence  $[Ag^+]^2 = \frac{1.29}{0.2324} \times 10^{-11}$   
Then  $K_{sp}$  for  $Ag_2CO_3$   
 $= [Ag^+]^2 [CO_3^{2^-}] = \frac{1.29 \times 10^{-11}}{0.2324} \times 0.0716$   
 $= 3.974 \times 10^{-12} \text{ mol}^3 l^{-3}$ 





## Subjective Questions of Equilibrium, (Part -2)

Q.21. A 40.0 ml solution of weak base, BOH is titrated with 0.1N HCl solution. The pH of the solution is found to be 10.04 and 9.14 after adding 5.0 ml and 20.0 ml of the acid respectively. Find out the dissociation constant of the base.

**Ans.**  $1.828 \times 10^{-5}$ 

Solution. Case I. Write the concerned chemical reaction

|                         | BOH       | + HC1 $\longrightarrow$ | BC1 + | H <sub>2</sub> O |
|-------------------------|-----------|-------------------------|-------|------------------|
| Moles before            | x         | 0.1 × 5 = 0.5           | 0     | 0                |
| reaction                |           |                         |       |                  |
| Moles after<br>reaction | (x – 0.5) | 0                       | 0.5   | 0.5              |
| ∴ Molar                 | x - 0.5   |                         | 0.5   | 0.5              |
| concentration           | V         |                         | V     | V                |

Since the solution represents a basic buffer, following Hendersen equation can be applied.

$$pOH = -\log K_{b} + \log \frac{[Salt]}{[Base]}$$
  
14 - 10.04 = -log K\_{b} + log  $\frac{0.5}{(x - 0.5)}$  ...(i)

#### Case II.

|                                             | BOH               | + HC1 $\longrightarrow$ | BC1 +   | - H <sub>2</sub> O |
|---------------------------------------------|-------------------|-------------------------|---------|--------------------|
| Moles at start                              | x                 | $0.1 \times 20 = 2$     | 0       | 0                  |
| Moles after<br>adding 20 ml.<br>of 0.1N HCl | (x – 2)           | 0                       | 2       | 2                  |
| ∴ Molar concentration                       | $\frac{x-2}{v_1}$ | 0                       | 2<br>14 | $\frac{2}{v_1}$    |

Again the solution is acting as basic buffer

$$\therefore \text{ pOH} = -\log K_b + \log \frac{[\text{Salt}]}{[\text{Base}]}$$

$$14 - 9.14 = -\log K_b + \log \frac{2}{(x-2)} \qquad \dots (ii)$$

$$\frac{3.96}{4.86} = \frac{0.5}{(x-0.5)} \times \frac{(x-2)}{2} \Rightarrow x = 0.088 \text{ mol } l^{-1}$$





Substituting x in (i) and solving for Kb

$$3.96 = -\log K_b + \log \frac{0.5}{0.088 - 0.5}$$
$$K_b = 1.828 \times 10^{-5}$$

Q.22. The solubility product  $(K_{sp})$  of  $Ca(OH)_2$  at 25°C is  $4.42 \times 10^{-5}$ . A 500 ml. of saturated solution of  $Ca(OH)^2$  is mixed with equal volume of 0.4 M NaOH. How much  $Ca(OH)_2$  in milligrams is precipitated?

Ans. 743.3 mg

**Solution.** Let the solubility of Ca(OH)2 in pure water = S moles/litre

Ca(OH)<sub>2</sub>  $\rightleftharpoons$  Ca<sup>2+</sup> + 2OH<sup>-</sup> s 2s Then K<sub>sp</sub> = [Ca<sup>2+</sup>] [OH<sup>-</sup>]<sup>2</sup> 4.42 × 10<sup>-5</sup> = S × (2S)<sup>2</sup>; 4.42 × 10<sup>-5</sup> = 4S<sup>3</sup> S = 2.224 × 10<sup>-2</sup> = 0.0223 moles litre<sup>-1</sup> ∴ No. of moles of Ca<sup>2+</sup> ions in 500 ml. of solution = λ

$$=\frac{0.0223\times500}{4000}=0.01115$$

**NOTE THIS STEP :** Now when 500 ml. of saturated solution is mixed with 500 ml of 0.4M NaOH, the resultant volume is 1000 ml. The molarity of OH– ions in the resultant solution would therefore be 0.2 M.

: 
$$[Ca^{2+}] = \frac{K_{sp}}{[OH^-]^2} = \frac{4.42 \times 10^{-5}}{(0.2)^2} = 0.001105 \,\mathrm{M}$$

Thus, No. of moles of  $Ca^{2+}$  or  $Ca(OH)_2$  precipitated = 0.01115 - 0.001105 = 0.010045

Mass of Ca(OH)<sub>2</sub> precipitated

$$= 0.010045 \times 74 = 0.7433 \text{ g} = 743.3 \text{ mg}$$

[mole wt. of  $Ca(OH)_2 = 74$ ]

Q.23. 0.15 mole of CO taken in a 2.5 l flask is maintained at 750 K along with a catalyst so that the following reaction can take place :

 $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ 

Hydrogen is introduced until the total pressure of the system is 8.5 atmosphere at equilibrium and 0.08 mole of methanol is formed. Calculate (i)  $K_p$  and  $K_c$  and (ii) the final pressure if the same amount of CO and  $H_2$  as before are used, but with no catalyst so that the reaction does not take place.

Ans. (i) 0.05 atm<sup>-2</sup>, 187.85 mol<sup>-2</sup> l<sup>2</sup>, (ii) 12.438 atm

## Solution. (i)

 $\begin{array}{rcl} & \text{CO}(g) & + & 2\text{H}_2(g) & \rightleftharpoons & \text{CH}_3\text{OH}\\ \text{Moles at start} & & 0.15 & \text{a} & & 0\\ \text{Moles at equb.} & & (0.15 - x) & (a - 2x) & & 0.08\\ \text{or} & & (0.15 - 0.08) & (a - 0.16) & & 0.08\\ \therefore & \text{Total moles at equb.} = 0.15 - 0.08 + a - 0.16 + 0.08\\ & = a - 0.01 \end{array}$ 

Total moles at equilibrium can also be calculated from the following relation

$$n = \frac{PV}{RT} = \frac{8.5 \times 2.5}{0.0821 \times 750} = 0.345$$

 $\therefore 0.345 = a - 0.01$  [Comparing (i) and (ii)]

or a = 0.355

Thus, Moles of CO at equilibrium = 0.15 - 0.08 = 0.07

Moles of  $H_2$  at equilibrium = 0.355 - 0.16 = 0.195

Moles of  $CH_3OH$  at equilibrium = 0.08

Substituting the values in the relation,

$$K_{c} = \frac{[CH_{3}OH]}{[H_{2}]^{2} [CO]} = \frac{0.08/2.5}{(0.195/2.5)^{2} \times (0.07/2.5)}$$
  
= 187.85 mole<sup>-2</sup> litre2 [:: V = 2.5 L]



Calculation of K<sub>p</sub>

 $K_p = K_c \ (RT)^{\Delta n} = 187.85 \times (0.0821 \times 750)^{-2} = 0.05 \ atm^{-2}$ 

 $[:: \Delta n = -2]$ 

(ii) Calculation of final pressure when there is no reaction

Moles of CO = 0.15; Moles of  $H_2 = 0.355$ 

 $\therefore$  Total moles = 0.15 + 0.355 = 0.505

PV = nRT

 $P \times 2.5 = 0.505 \times 0.0821 \times 750 \Rightarrow P = 12.438$  atm.

Q.24. The pH of blood stream is maintained by a proper balance of  $H_2CO_3$  and NaHCO<sub>3</sub>concentrations. What volume of 5M NaHCO<sub>3</sub> solution should be mixed with a 10 ml sample of blood which is 2M in  $H_2CO_3$  in order to maintain a pH of 7.4 ?  $K_a$  for  $H_2CO_3$  in blood is  $7.8 \times 10^{-7}$ .

Ans. 78.36 ml

**Solution.** Volume of blood = 10 ml. (given)

 $[H_2CO_3]$  in blood = 2 M (given)

 $[NaHCO_3]$  to be added = 5 M (given)

Let volume of NaHCO<sub>3</sub> added in 10 ml blood = V ml

$$\therefore [H_2CO_3] \text{ in blood mixture } = \frac{2 \times 10}{(V+10)}$$

$$[NaHCO_3] \text{ in blood mixture } = \frac{5 \times V}{(V+10)}$$

$$\therefore pH = pK_a + \log \frac{[Salt]}{[Acid]}$$
or 7.4 = -log 7.8 × 10<sup>-7</sup> + log  $\frac{5V/(V+10)}{20/(V+10)}$   $\therefore V = 78.36 \text{ ml}$ 



# Q.25. An aqueous solution of a metal bromide $MBr_2$ (0.05M) is saturated with $H_2S$ . What is the minimum pH at which MS will precipitate?

 $K_{sp}$  for MS = 6.0 x 10 <sup>-21</sup>; concentration of saturated  $H_2S$  = 0.1 M

$$K_1 = 10^{-7}$$
 and  $K_2 = 1.3 \times 10^{-13}$ , for H<sub>2</sub>S.

**Ans.** 0.983

Solution.

$$H_2 S \rightleftharpoons H^+ + HS^- \therefore K_1 = \frac{[H^+][HS^-]}{[H_2 S]}$$
  
Further,  $HS^- \rightleftharpoons H^+ + S^{2-} \therefore K_2 = \frac{[H^+][S^{2-}]}{[HS^-]}$ 

Dissociation constant of H\_2S, K = K\_1 × K\_2

i.e.K = 
$$1 \times 10^{-7} \times 1.3 \times 10^{-13} = 1.3 \times 10^{-20}$$

Now we know that

$$K_{sp} = [M^{2+}][S^{2-}] \implies 6 \times 10^{-21} = 0.05 \times [S^{2-}]$$
$$[S^{2-}] = \frac{6 \times 10^{-21}}{0.05} = 1.2 \times 10^{-19}$$

Substituting the various values in the following relation

$$K = \frac{[H^+]^2 [S^{2^-}]}{[H_2 S]}$$

$$1.3 \times 10^{-20} = \frac{[H^+]^2 [1.2 \times 10^{-19}]}{0.1} \quad \because \ [H_2 S] = 0.1 \text{ M}$$

$$[H^+]^2 = \frac{1.3 \times 10^{-20} \times 0.1}{1.2 \times 10^{-19}}$$

$$[H^+] = \sqrt{\frac{1.3 \times 10^{-20} \times 0.1}{1.2 \times 10^{-19}}} = 1.04 \times 10^{-1}$$

$$pH = -\log \ [H^+]; pH = -\log \ (1.04 \times 10^{-1})$$

$$= 1.0 - \log 1.04 = 1.0 - 0.017 = 0.983$$



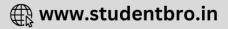
Q.26. At temperature T, a compound AB<sub>2</sub> (g) dissociates according to the reaction

$$2AB_2(g) = 2AB(g) + B_2(g)$$

with a degree of dissociation x which is small compared with unity. Deduce the expression for x in terms of the equilibrium constant  $K_p$  and the total pressure, P.

**Ans.** 
$$\left[\frac{2K_p}{p}\right]^{1/3}$$

#### Solution.


 $2AB_{2}(g) \rightleftharpoons 2AB(g) + B_{2}(g)$ Initial mole 1 0 0 Moles at equb 1-x x  $\frac{x}{2}$ Total moles at equb.  $=1-x+x+\frac{x}{2}=1+\frac{x}{2}=\frac{2+x}{2}$   $p_{AB_{2}} = \frac{(1-x)}{2+x/2}P = \frac{2(1-x)}{2+x}P$   $p_{AB} = \frac{x}{2+x/2}P = \frac{2x}{2+x}P$   $p_{B_{2}} = \frac{x/2}{2+x/2}P = \frac{x}{2+x}P$   $p_{B_{2}} = \frac{x/2}{2+x/2}P = \frac{x}{2+x}P$   $(p_{AB_{2}})^{2} = \frac{\left(\frac{2x}{2+x}P\right)^{2}\left(\frac{x}{2+x}P\right)}{\left[\frac{2(1-x)}{(2+x)}P\right]^{2}}$   $= \frac{x^{3}P}{(2+x)(1-x)^{2}}$  $K_{p} \approx \frac{x^{3}}{2}P$  or  $x = \left[\frac{2K_{p}}{P}\right]^{1/3}$ 

#### Q.27. For the reaction

$$[Ag(CN)_2]^- \longrightarrow Ag^+ + 2CN^-$$

the equilibrium constant, at  $25^{\circ}$ C , is 4.0 x 10<sup>-19</sup>. Calculate the silver ion concentration in a solution which was originally 0.10 molar in KCN and 0.03 molar in AgNO<sub>3</sub>.





Ans.  $7.5 \times 10^{-18}$  M

Solution. TIPS/Formulae : Consider common ion effect

Conc. of Ag+ions = Conc. of AgNO3 = 0.03 M

Most of these Ag+ ions will be present in the form of  $[Ag(CN)_2]^-$ .

0.03 M AgNO<sub>3</sub> requires  $2 \times 0.03$  M

 $= 0.06 \text{ M CN}^{-}$  to form  $[\text{Ag}(\text{CN})_2]^{-}$ 

 $\therefore$  Conc. of free CN<sup>-</sup> at equilibrium will be 0.1 - 0.06 = 0.04 M

$$[Ag(CN)_{2}]^{-} \rightleftharpoons Ag^{+} + 2CN^{-}$$
  
$$\therefore K = \frac{[Ag^{+}][CN^{-}]^{2}}{[Ag(CN)_{2}]}; 4.0 \times 10^{-9} = \frac{[Ag^{+}][0.04]^{2}}{0.03}$$
  
$$[Ag^{+}] = \frac{4.0 \times 10^{-19} \times 0.03}{(0.04)^{2}} = 7.5 \times 10^{-18} M$$

Q.28. Calculate the pH of an aqueous solution of 1.0 M ammonium formate assuming complete dissociation.

 $(pK_a \text{ of formic acid} = 3.8 \text{ and } pK_b \text{ of ammonia} = 4.8.)$ 

**Ans.** 6.5

**Solution.** For ammonium formate which is a salt of weak acid with weak base, we know that

$$pH = \frac{1}{2}[pK_w + pK_a - pK_b] = \frac{1}{2}[14 + 3.8 - 4.8] = 6.5$$

#### Q.29. What is the pH of a 0.50 M aqueous NaCN solution? pKb of CN<sup>-</sup> is 4.70.

**Ans.** 11.5

Solution.  $pK_b = 4.70, \therefore K_b = 10^{-4.7}$ Now we know that

 $[OH^-] = \sqrt{K_b \times c}$ 





$$\therefore$$
 [OH<sup>-</sup>] =  $\sqrt{10^{-4.7} \times 0.5}$  = 3.158×10<sup>-3</sup> M

Now we know that

pOH = -log[OH-] $pOH = -log 3.158 \times 10^{-3} = 2.5$ or, pH = 14 - 2.5 = 11.5

Q.30. A sample of AgCl was tr eated with 5.0 0 mL of 1.5 M Na<sub>2</sub>CO<sub>3</sub> solution to give Ag<sub>2</sub>CO<sub>3</sub>. The remaining solution contained 0.0026 g of Cl<sup>-</sup> per litre. Calculate the solubility product of AgCl (Ksp(Ag<sub>2</sub>CO<sub>3</sub>) =  $8.2 \times 10^{-12}$ ).

**Ans.**  $1.71 \times 10^{-10}$ 

Solution. The concerned chemical reaction is

 $2AgCl + Na_2CO_3 \rightarrow Ag_2CO_3 + 2 NaCl$ 

Calculation of [Ag<sup>+</sup>] left in the solution :

$$K_{sp}(Ag_2CO_3) = [Ag^+]^2 [CO_3^{2-}]$$
  
 $[Ag^+] = \sqrt{\frac{8.2 \times 10^{-12}}{1.5}} = 2.34 \times 10^{-6} M$ 

Concentration of Cl- left = 0.0026 g/l

$$= \frac{0.0026}{35.5} \text{ mol}/l = 7.33 \times 10^{-5} \text{ M}$$
  

$$\therefore \text{ Ksp(AgCl)} = [\text{Ag}^+] [\text{Cl}^-] = (2.34 \times 10^{-6}) (7.33 \times 10^{-5})$$
  

$$= 1.71 \times 10^{-10}$$

Q.31. An acid type in dicator, HIn differ s in colour fr om its conjugate base (In<sup>-</sup>). The human eye is sensitive to colour differences only when the ratio[In<sup>-</sup>]/[HIn] is greater than 10 or smaller than. 0.1. What should be the minimum change in the pH of the solution to observe a complete colour change (Ka= $1.0 \times 10^{-5}$ )?

CLICK HERE

**Ans.** 2

**Solution.** Given  $K_a = 1 \times 10^{-5}$ 

 $\therefore pK_a = 5$ 

The two conditions when colour indicator will be visible are derived by

$$pH = pK_a + \log \frac{[In^-]}{[HIn]}$$
  
(i) pH = 5 + log 10 = 6  
(ii) pH = 5 + log 0.1 = 4

Thus minimum change in pH = 2

Q.32. Given :  $Ag(NH_3)_2^+ \longrightarrow Ag^+ + 2NH_3, K_c = 6.2 \times 10^{-8}$  and  $K_{sp}$  of  $AgCl = 1.8 \times 10^{-10}$  at 298 K. If ammonia is added to a water solution containing excess of AgCl(s) only, calculate the concentration of the complex in 1.0 M aqueous ammonia.

Ans. 0.0538 M

#### Solution.

For AgCl; AgCl 
$$\longrightarrow$$
 Ag<sup>+</sup> + Cl<sup>-</sup>  
 $\therefore K_{sp} = [Ag^+][Cl^-] \qquad \dots(i)$   
Again it is given that  
 $[Ag(NH_3)_2]^+ \longrightarrow Ag^+ + 2NH_3; K_c = 6.2 \times 10^{-8}$   
or Ag<sup>+</sup> + 2NH<sub>3</sub>  $\longrightarrow [Ag(NH_3)_2]^+;$   
 $K_f = \frac{1}{6.2 \times 10^{-8}} = \frac{10^8}{6.2}$   
 $\therefore K_f = \frac{[Ag(NH_3)_2]^+}{[Ag^+][NH_3]^2} \text{ or } [Ag^+] = \frac{[Ag(NH_3)_2]^+}{K_f[(NH_3)_2]}$ 

**NOTE THIS STEP :** Since the formation constant of the complex is very high, most of the  $[Ag^+]$  which dissolves must be converted into complex and each  $Ag^+$  dissolved also requires dissolution of  $Cl^-$ .

 $\therefore$  [Cl<sup>-</sup>] = [Ag (NH<sub>3</sub>)<sub>2</sub>]<sup>+</sup> and let it be c M

Equation (i) becomes



$$K_{sp} = \frac{[\text{Ag}(\text{NH}_3)_2]^+}{\text{K}_f[\text{NH}_3]^2} \times c \implies K_{sp} = \frac{c}{K_f[1]^2} \times c$$

$$c^2 = K_{sp} \times K_f[1]^2 = 1.8 \times 10^{-10} \times \frac{10^8}{6.2} \times (1)^2$$

$$c^2 = \frac{1.8 \times 10^{-2}}{6.2} = 0.2903 \times 10^{-2}$$
or  $c = 0.538 \times 10^{-1} = 0.0538 \text{ M}$ 

Q.33. What will be the resultant pH when 200mL of an aqueous solution of HCl (pH = 2.0) is mixed with 300 mL of an aqueous solution of NaOH (pH = 12.0)?

**Ans.** 11.3010

Solution.

HC1 + NaOH  $\longrightarrow$  NaCl + H<sub>2</sub>O Meq. before reaction  $200 \times 10^{-2} \ 300 \times 10^{-2} \ 200 \times 10^{-2} \ 200 \times 10^{-2} \ 200 \times 10^{-2} \ 200 \times 10^{-2} \ pH of HCl = 2, pH of NaOH = 12$   $\therefore$  [HCl] =  $10^{-2}$  M,  $\therefore$  [NaOH] =  $10^{-2}$  M  $\therefore$  [OH<sup>-</sup>] =  $\frac{100 \times 10^{-2}}{500}$  =  $2 \times 10^{-3}$  or p[OH] =  $-\log(2 \times 10^{-1})$  $\therefore$  pOH = 2.6989;  $\therefore$  pH = 11.3010 [pH = 14 - p(OH)]

Q.34. When 3.06 g of solid NH<sub>4</sub>HS is introduced into a two litre evacuated flask at 27° C, 30% of the solid decomposes into gaseous ammonia and hydrogen sulphide. (i) Calculate Kc and Kp for the reaction at 27°C. (ii) What would happen to the equilibrium when more solid NH<sub>4</sub>HS is introduced into the flask ?

**Ans.**  $8.1 \times 10^{-5} \text{ mol}^2 \text{ } \text{l}^{-2}, 4.90 \times 10^{-2} \text{ atm}^2$ 

Solution.

 $NH_4HS_{(s)} \implies NH_{3(g)} + H_2S_{(g)}$ 



Initial moles 
$$\frac{3.06}{51}$$
 0 0  
Moles at eq.  $\frac{3.06}{51} \times \frac{70}{100}$   $\frac{3.06}{51} \times \frac{30}{100}$   $\frac{3.06}{51} \times \frac{30}{100}$   
Given  $V = 2$  litre,  $T = 300$ K,  $\Delta n = 2 - 0 = 2$   
 $\therefore K_c = [NH_3][H_2S] = \frac{3.06 \times 30}{51 \times 100 \times 2} \times \frac{3.06 \times 30}{51 \times 100 \times 2}$   
 $= 8.1 \times 10^{-5} \text{ mol}^2 \text{ litre}^{-2}$   
Also  $K_p = K_c (RT)^{\Delta n} = 8.1 \times 10^{-5} (0.082 \times 300)^2$   
 $= 4.90 \times 10^{-2} \text{ atm}^2$ 

**NOTE :** Addition of more  $NH_4HS$  on this equilibrium will cause no effect because concentration of  $NH_4HS$  is not involved in formula of  $K_p$  or  $K_c$ .

# Q.35. The solubility of Pb(OH)<sub>2</sub> in water is $6.7 \times 10^{-6}$ M. Calculate the solubility of Pb(OH)<sub>2</sub>in a buffer solution of pH = 8.

**Ans.**  $1.203 \times 10^{-3}$  mol litre<sup>-1</sup>

Solution.

 $\begin{array}{rcl} & \mbox{Pb(OH)}_2 & \longrightarrow & \mbox{Pb}^{2+} & + & 20\text{H}^-\\ (given) & 6.7 \times 10^{-6}\text{M} & 6.7 \times 10^{-6}\text{M} & 2 \times 6.7 \times 10^{-6}\text{M} \end{array}$  $\therefore \ K_{sp} = [\text{Pb}^{2+}][\text{OH}^-]^2 = (6.7 \times 10^{-6}) \ (2 \times 6.7 \times 10^{-6})^2\\ = 1.203 \times 10^{-15} \end{array}$ 

The buffer solution pH = 8 (given)

 $\therefore$  pOH = 6 or [OH<sup>-</sup>] = 10<sup>-6</sup>

Thus in this buffer we have,  $[Pb^{2+}][OH^{-}]^2 = 1.203 \text{ x } 10^{-15}$ 

or  $[Pb^{2+}] \times [10^{-6}]^2 = 1.203 \text{ x } 10^{-15}$ 

 $\therefore$  [Pb<sup>2+</sup>] = 1.203 x 10<sup>-3</sup> mol litre<sup>-1</sup>

Q.36. The average concentration of  $SO_2$  in the atmosphere over a city on a certain day is 10 ppm, when the average temperature is 298 K. Given that the solubility of  $SO_2$  in water at 298 K is 1.3653 moles litre<sup>-1</sup> and the pKa of  $H_2SO_3$  is 1.92, estimate the pH of rain on that day.



Ans. 4.865

**Solution.** Amount of SO<sub>2</sub> in atmosphere =  $=\frac{10}{10^6} = 10 \times 10^{-6}$ 

Molar concentration of SO<sub>2</sub> present in water = Amount of SO<sub>2</sub> × Solubility of SO<sub>2</sub> in water =  $10 \times 10^{-6} \times 1.3653$  mole L<sup>-1</sup> =  $1.3653 \times 10^{-5}$  M

Writing the concerned chemical equation

 $\begin{array}{rcl} H_2 SO_3 &\longrightarrow & H^+ + HSO_3^-\\ \text{Initial conc.} & 1.3653 \times 10^{-5} & 0 & 0\\ \text{Molar conc. at equb.} & 1.3653 \times 10^{-5} - x & x & x \end{array}$   $\begin{array}{rcl} \text{Therefore} & K_a = \frac{x^2}{(1.3653 \times 10^{-5} - x)}\\ \Rightarrow & 10^{-1.92} = \frac{x^2}{(1.3653 \times 10^{-5} - x)}\\ (\text{pK}_a = 1.92, \ \therefore \ K_a = 10^{-1.92})\\ \Rightarrow & 1.2 \times 10^{-2} = \frac{x^2}{(1.3653 \times 10^{-5} - x)}\end{array}$ 

$$x^2 = 1.2 \times 10^{-2} (1.3653 \times 10^{-5} - x)$$
 On solving,  $x = 1.364 \times 10^{-5}$ 

Therefore,  $pH = -\log(1.364 \times 10^{-5}) = 4.865$ 

Q.37. 500 mL of 0.2 M aqueous solution of acetic acid is mixed with 500 mL of 0.2 M HCl at 25°C.

(i) Calculate the degree of dissociation of acetic acid in the resulting solution and pH of the solution.

(ii) If 6 g of N aOH is a dded to th e above soluti on , determine the final pH. [Assume there is no change in volume on mixing;  $K_a$  of acetic acid is  $1.75 \times 10^{-5}$  mol L<sup>-1</sup>].

**Ans.**  $1.75 \times 10^{-4}$ , 1, 4.75

**Solution.** (i) The volume being doubled by mixing the two solutions, the molarity of each component will be halved i.e.

CLICK HERE

 $[CH_3COOH] = 0.1 M, [HC1] = 0.1 M.$ 



NOTE :

HCl being a strong acid will remain completely ionised and hence  $H^+$  ion concentration furnished by it will be 0.1 M. This would exert common ion effect on the dissociation of acetic acid, (a weak acid.)

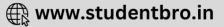
 $\begin{array}{c} \mathrm{CH}_{3}\mathrm{COOH} & \overleftarrow{\qquad} \mathrm{CH}_{3}\mathrm{COO}^{-} + \mathrm{H}^{+} \\ \mathrm{At \ start} & \mathrm{C} & 0 & 0 \\ \mathrm{At \ equilibrium} & \mathrm{C} \left(1 - \alpha\right) & \mathrm{C}\alpha & \mathrm{C}\alpha + 0.1 \\ \mathrm{K}_{a} = \frac{C\alpha(C\alpha + 0.1)}{C(1 - \alpha)} = \frac{C\alpha^{2} + 0.1\alpha}{(1 - \alpha)} \end{array}$ 

Since  $\alpha$  is very very small, Ca<sup>2</sup> can be neglected and  $1 - \alpha$  can be taken as unity

:. 
$$K_a = 0.1 \alpha$$
  
or  $\alpha = \frac{K_a}{0.1} = \frac{1.75 \times 10^{-5}}{0.1} = 1.75 \times 10^{-4}$   
 $[H^+]_{Total} = 0.1 + C\alpha$ ,  
C $\alpha$  is negligible as compared to 0.1

$$\therefore [H^+]_{\text{Total}} = 0.1 \qquad \therefore \quad pH = 1$$
(ii) 6g NaOH =  $\frac{6}{40} = 0.15$ mol

0.1 mole of NaOH will be consumed by 0.1 mole of HCl.


Thus, 0.05 mole of NaOH will react with acetic acid according to the equation.

 $\label{eq:COOM} \begin{array}{c} \mathrm{CH_3COOH} + \mathrm{NaOH} \rightarrow \mathrm{CH_3COONa} + \mathrm{H_2O} \\ \mathrm{Initial\ moles} \quad 0.1\ \mathrm{mol} \quad 0.05\ \mathrm{mol} \quad 0 \quad 0 \\ \mathrm{At\ equilibrium} \quad 0.05\ \mathrm{mol} \quad 0\ \mathrm{mol} \quad 0.05\ \mathrm{mol} \quad 0.05\ \mathrm{mol} \end{array}$ 

Thus, solution of acetic acid and sodium acetate will become acidic buffer. So pH of the buffer will be

$$pH = pK_a + \log \frac{[\text{salt}]}{[\text{acid}]}$$
$$= -\log(1.75 \times 10^{-5}) + \log 1 = 4.75$$





Q.38. Match the following if the molecular weights of X, Y and Z are same.

|   | Boiling Point | К    |
|---|---------------|------|
| х | 100           | 0.63 |
| v | 27            | 0.53 |
| z | 253           | 0.98 |

**Ans.** x = 0.63, y = 0.53, z = 0.98

**Solution.** TIPS/Formulae :

Higher the value of dipole-dipole interaction higher is b.p.

Higher value of  $K_b$  of a solvent suggests larger polarity of solvent molecules which in turn leads to higher dipole – dipole interaction implies higher boiling point due to dipole – dipole interaction. Therefore, the correct order of  $K_b$  values of the three given solvents is

Mathematically  $K_b = \frac{M_A R T_b^2}{\Delta H_{vap} \times 1000}$ 

or  $K_b \propto T_b$  (b.pt.)

| Solvents | Boiling point | K <sub>b</sub> values |
|----------|---------------|-----------------------|
| X        | 100°C         | 0.63                  |
| Y        | 27°C          | 0.53                  |
| Z        | 283°C         | 0.98                  |

# Integer Type Question of Equilibrium

Q. 1. 0.1 M NaOH is titrated with 0.1 M HA till the end point;  $K_a$  for HA is 5.6 × 10<sup>-6</sup> and degree of hydrolysis is less compared to 1. Calculate pH of the resulting solution at the end point.

**Ans.** 9

Solution.  $HA + NaOH \rightarrow NaA + H 2O$ 

At the end point, the solution contains only NaA whose concentration is 0.1/2 = 0.05 M Since the salt NaA is formed by strong alkali (NaOH) and weak acid HA (indicated by its low K<sub>a</sub> value), its pH can be evaluated by the following relation.

$$pH = \frac{1}{2}(pK_w + pK_a + \log C)$$
$$= \frac{1}{2}(14 + 5.3010 + (-1.3010)] = 9$$

Q. 2. The dissociation constant of a substituted benzoic acid at  $25^{\circ}$ C is  $1.0 \times 10^{-4}$ . The pH of a 0.01 M solution of its sodium salt is

Ans. 8

Solution. pH of sodium salt of weak acid

 $=\frac{1}{2}(pK_{w}+pK_{a}+\log C)=\frac{1}{2}(14+4-2)=8$ 

Q. 3. Amongst the following, the total number of compounds whose aqueous solution turns red litmus paper blue is

KCN, K<sub>2</sub>SO<sub>4</sub>, (NH<sub>4</sub>)<sub>2</sub>C<sub>2</sub>O<sub>4</sub>, NaCl, Zn(NO<sub>3</sub>)<sub>2</sub>, FeCl<sub>3</sub>, K<sub>2</sub>CO<sub>3</sub>, NH<sub>4</sub>NO<sub>3</sub> and LiCN

**Ans.** 3

**Solution.** KCN,  $K_2CO_3$  and LiCN are the salts of weak acid and strong base. So, their aqueous solutions turns red litmus paper blue.

## Q. 4. The total number of diprotic acids among the following is:

H<sub>3</sub>PO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub>, H<sub>3</sub>PO<sub>3</sub>, H<sub>2</sub>CO<sub>3</sub>, H<sub>2</sub>S<sub>2</sub>O<sub>7</sub>, H<sub>3</sub>BO<sub>3</sub>, H<sub>3</sub>PO<sub>2</sub>, H<sub>2</sub>CrO<sub>4</sub> and H<sub>2</sub>SO<sub>3</sub>.





#### **Ans.** 6

Solution. Diprotic acids are H<sub>2</sub>SO<sub>4</sub>, H<sub>3</sub>PO<sub>3</sub>, H<sub>2</sub>CO<sub>3</sub>, H<sub>2</sub>S<sub>2</sub>O<sub>7</sub>, H<sub>2</sub>CrO<sub>4</sub> and H<sub>2</sub>SO<sub>3</sub>.

Q. 5. In 1 L saturated solution of AgCl [Ksp(AgCl) =  $1.6 \times 10^{-10}$ ], 0.1 mol of CuCl [K<sub>sp</sub>(CuCl) =  $1.0 \times 10^{-6}$ ] is added. The resultant concentration of Ag<sup>+</sup> in the solution is  $1.6 \times 10^{-x}$ . The value of "x" is

**Ans.** 7

Solution. Let the solubility of AgCl is x mol litre<sup>-1</sup> and that of CuCl is y mol litre<sup>-1</sup>

AgCl 
$$\Longrightarrow$$
 Ag<sup>+</sup> + Cl<sup>-</sup>  
 $x$   $x$   
CuCl  $\Longrightarrow$  Cu<sup>+</sup> + Cl<sup>-</sup>  
 $y$   $y$   
 $\therefore$  K<sub>sp</sub> of AgCl = [Ag<sup>+</sup>] [Cl<sup>-</sup>]  
 $1.6 \times 10^{-10} = x (x + y) \dots (i)$   
Similarly, K<sub>sp</sub> of CuCl = [Cu<sup>+</sup>][Cl<sup>-</sup>]  
 $1.6 \times 10^{-6} = y(x + y) \dots (ii)$   
On solving, (i) and (ii)

 $[\mathrm{Ag^{\scriptscriptstyle +}}] = 1.6 \times 10^{-7} \div \mathrm{x} = 7$ 

